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Abstract—The detection of radioactive contraband is a crit-
ical problem in maintaining national security for any country.
Emissions from threat materials challenge both detection and
measurement technologies especially when concealed by various
types of shielding complicating the transport physics significantly.
The development of a model-based sequential Bayesian processor
that captures both the underlying transport physics including
scattering offers a physics-based approach to attack this chal-
lenging problem. It is shown that this processor can be used to
develop an effective detection technique.

I. INTRODUCTION

A commercial semi-trailer truck passing through a portal
monitor at a reasonable speed must be screened at ports-of-
entry for possible threats emanating from radioactive contra-
band. Similarly, a container moving on a conveyor belt for
relocation and screening at airports or shipping ports presents
a potential mechanism to transport terrorist contraband into
a country posing a significant threat to national security.
The need to investigate techniques that can provide for more
sensitive detection of terrorist threats throughout the world
demand that meaningful approaches be developed to solving
many critical security problems for the protection of valuable
national resources.

Detection of threat radiological materials is a difficult prob-
lem primarily because of low observable count rates and short
detection intervals available. For instance, semi-trailer vehicles
move through portal systems allowing less than 10 seconds for
the initial screening. Shielding materials from packaging and
adjacent cargo present major difficulties in these low-count,
hostile environments. Low-count detection is a challenging
problem made difficult because of background noise, measure-
ment system inadequacies, and the heterogeneous transport
paths between source and detector [1]-[3]. The basic problem
we investigate is the detection and identification of radioactive
contraband from low-count measurements using a physics-
based statistical approach based on Bayesian inference and
model-based signal processing [4], [5]. Some work has been
accomplished on this problem [6]-[8], but very little effort
has been performed on this specific application in the signal
processing area. Our approach closely follows the development
of the Bayesian processor of a previous paper [8] with the in-
corporation of Compton scattering photons into the processing
scheme. This is accomplished by extending the radionuclide
representation to incorporate the scattered photons along with
the development of a simplified one-dimensional transport

model required to capture material interactions in the shield
and detector materials.

In Sec. II we develop the physics-based signal processing
models employed in the subsequent Bayesian constructs. Next
we develop the sequential detection paradigm in Sec. III. In
Sec. IV we investigate solutions to the processing problem and
implementation of the technique. In Sec. V we develop the
overall identification scheme and demonstrate its performance
on experimental data. The results of applying the processor
to controlled experimental data shows the capability of the
sequential processor to perform in an effective manner.

II. PHYSICS-BASED PROCESSING MODEL

In this section we discuss physics-based representations that
will be incorporated into the model-based signal processors
for detection and identification. The measured data consists
of a low energy count, random, impulsive-like, time series
measurements (energy vs time) in the form of an event mode
sequence (EMS) obtained from the detector electronics [2].
A particular radionuclide can be uniquely characterized by
two basic parameters: its energy and the relative intensity
of γ-rays emitted [2]. Mathematically, we define the pair,
[{εm�}, {λm�}], as the respective energy (MeV) and photon
detection rate of the �th-downscatter and mth γ-ray line of
the radionuclide. The γ-ray is transported through a medium
and interacts with materials, shield and detector resulting in
the output of a list of events consisting of an event time an
amplitude of pulse height or energy.

For sequential detection we process each event in the EMS
individually using a model with parameters that are analogous
to the features in a pulse-height spectrum (PHS) of counts
versus energy. Since a radionuclide emits γ-rays at specific
energies and rates, the sequence of emitted photons can be
characterized by sets of measured energies and arrival times
at the detector: [{εm�} , {τm�}] , � = 0, · · · , Lε(m), m =
1, · · · , Mε. The index m represents the mth γ-ray line (energy)
for a radionuclide with Mε lines and the index � > 1 represents
the corresponding �th “downscattered” line. It is convenient
to think of each line as a separate source (� = 0). Then
the emission from a given radionuclide is represented as a
superposition of individual γ-ray sources. We will refer to
this as the monoenergetic decomposition of the EMS for the
radionuclide.



A. Event Mode Sequence

We start with a single γ-ray arrival which can (in our
problem) be either an absorbed photon that exchanges all
of its energy with an electron (photoelectric absorption) or
a scattered photon that exchanges part of its energy with
an electron (Compton scattering). In either case, we define
ξ(n; εm�, τm�), a component of an EMS sequence, as the nth
measured photon arrival from the mth monoenergetic source
of energy (� = 0) or the �th downscatter (� > 1) of energy
εm�(n), at arrival time, τm�(n) with associated detection rate,
λm�(n). The finite resolution of the detector introduces a
random component to the measured energy; therefore, the
energy is more accurately represented as a random variable
at the nth arrival εm�(n). The resulting representation for a
single photon arrival is ξ(n; εm�, τm�) = εm�(n)δ(t−τm�(n)).
By photon arrival we refer only to the arrival of photons that
are measured by the detector and contribute to the EMS output
of the detector.

In order to define the entire emission sequence over a
specified observation time interval, [to, T ), we introduce the
set notation, τ̃m� := { τm�(1) · · · τm�(Nε(m)) } and ε̃m� :=
{ εm�(1) · · · εm�(Nε(m)) } for ; � = 0, 1, · · ·, Lε(m); m =
0, · · · , Mε with Nε(m) along with Lε(m) as the total number
of counts and downscatterers for the mth-source in the inter-
val. Therefore, ξ(n; ε̃m�, τ̃m�) results in an impulse train of
random energies from the m�th source up to the nth arrival.

The interarrival time is defined by �τm�(n) = τm�(n) −
τm�(n − 1) for �τm�(0) = to with the corresponding set
definition (above) of �τ̃m�(n). Using this definition, we can
rewrite with a slight abuse of notation, the photon arrival as
ξ(n; εm�, τm�) ⇒ ξ(n; εm�,�τm�) = εm�(n)δ(t − τm�(n)),
where it is understood that τm�(n) = τm�(n− 1) +�τm�(n).
Thus, we can rewrite the EMS in terms of interarrivals just
as easily as arrivals, that is, the mth monoenergetic source
representation of a radionuclide characterized by its unique
set of energy/arrival pairs is given by

ξ(Nε(m); ε̃m�,�τ̃m�) =
Lε(m)∑
�=0

Nε(m)∑
n=1

εm�(n)δ(t −�τm�(n))

(1)
at detection rate λm�(n) for to known.

Following Refr. [8] this EMS model can be extended from
a single monoenergetic source representation to incorporate
a set of Mε-monoenergetic source components that compose
a complete source radionuclide (RN). The “extended” mo-
noenergetic decomposition includes both photoelectric and
downscattered photons. The emission of photons follows a
well-defined probability structure, that is, since only one
photon is emitted for each event there is a fixed probability
(absolute intensity αm�) that the photon is emitted with energy
εm� out of LεMε possibilities. The probabilities for a given
radionuclide are specified in its energy decay diagram [2], [3].
Therefore, we model this decay structure by incorporating an

indicator function defined by [10]:

Ijk(m, �) =

{ 1 m = j & � = k

0 m �= j ⊕ � �= k

where Ijk(m, �) is a random variable such that Pr(Ijk(m, �) =
1|ξ(n; ε, τ)) = Pr(Ijk(m, �) = 1|Ξn) = αjk for αjk the cor-
responding absolute intensity emission/occurrence probability
of the jth-monoenergetic radionuclide component and the kth
downscatter. Using the indicator function we can write the
jkth arrival (m → j; � → k) of the EMS as

R(N ; ε,�τ) =
Mε∑

m=1

Lε(m)∑
�=0

Nε(m)∑
n=1

Ijk(m, �)εm�(n)δ(t − τm�(n)) (2)

for ε := {ε̃1�, · · · , ε̃Mε�}, the complete set of energies com-
posing R along with �τ := {�τ̃1�, · · · , τ̃Mε�}, the corre-
sponding set of interarrival times. The arrival index N is the
least upper bound of the set Nε(m). We model the energy
variations as Gaussian, ε ∼ N (εm�, σ

2
εm�

), the interarrivals
as exponential, �τm� ∼ E(αm�λ�τm��τm�(n)) [2] with the
emission/occurrence probability as αm�.

B. Compton Scattering Processing Model

In this section we briefly discuss the simple γ-ray transport
model to capture and discriminate downscattered photons.
The fundamental idea is to represent the EMS as a marked
Poisson process [6] specified by its rate parameter λ(ε) as a
function of energy. Here the objective is to relate the source
rate through the transport chain to the rate measured at the
radiation detector.

The simplified γ-ray transport model developed for the
model-based sequential processor is based on a simple one-
dimensional geometry describing the source radionuclide,
shield effects and radiation detector including its material
response function. The model incorporates the physics of pho-
toelectric absorption and Compton scattering represented by
the rate distributions. The general approach is to characterize
the transport physics that incorporates the probabilities that
the photon: (1) will escape from the material; (2) will down-
scatter to a lower energy; or (3) will be absorbed producing
a photoelectron. Here the probability is a characteristic of
both geometry and material composition. The resulting signal
processing transport (SPT) model describes a fixed, one-
dimensional geometry of the source-shield-detector transport
path assuming uncorrelated photon interaction ignoring the
pair production physics prevalent at higher energy (ε >
1MeV ) [2].

The basis of this approach is the mathematical projection of
the 6-dimensional Boltzmann radiation transport equation to
a single dimensional point-to-point equivalent for a specific
geometry incorporating shielding and the detector material
response. Details of the model development can be found in
Chambers [7].



The SPT model is represented by the RN source, shield
and detector with the output rate probability distributions
defined by λSRC(ε), λESC(ε), λDET (ε), respectively. The
source photon emission rate distribution corresponds to the
distribution of photons incident (input) to either the shield
or detector, λINC(ε), depending on the transport configura-
tion. A fraction or probability of the incident photons will
be absorbed, pABS(ε) with corresponding rate distribution,
λABS(ε) given by: λABS(ε) = pABS(ε) × λINC(ε) while
the remaining photons escape or are scattered according to
(1 − pABS) × λINC (ε). Defining the escape probability as
pESC(ε) enables us to write the corresponding scattering rate
distribution as λESC(ε).

To be more precise let pSCAT (ε; ε′) be the probability of
photons at energy ε′ downscattered to ε by a single interaction
with the material. The corresponding Compton scattered rate
distribution can be expressed as

λ
(1)
SCAT (ε) = K(ε; ε′) ◦ λINC(ε′) =

∫ ∞

ε

K(ε; ε′)λINC (ε′) dε′

(3)
where K(ε; ε′) := pSCAT (ε; ε′) × (1 − pABS(ε′)) × (1 −
pESC(ε′)).

The total rate distributions of escaped and absorbed photons
are obtained by summing over all k-scattering orders. That is,
define the total scattering function as:

λABS(ε) = pABS(ε) × SSCAT (ε)
λESC(ε) = pESC(ε) × (1 − pABS(ε))SSCAT (ε)

λSCAT (ε) =
∫ ∞

ε

pSCAT (ε; ε′) × (1 − pABS(ε′))

×(1 − pESC(ε′))SSCAT (ε′) dε′ (4)

Solving these equations enable us to estimate the rate distri-
butions of both absorbed and escaped photons for all orders of
scattering. The model has been developed and validated using
sophisticated Monte Carlo simulation algorithms (see [7] for
more details).

From the signal processing perspective, we know that
the sequential decision function (to follow) requires that for
each photon arrival the energy, detection rate (reciprocal
mean interarrival time) and emission/occurrence (photoelec-
tric/downscatter) probabilities must be estimated. Since both
photoelectric and downscattered arrivals can have the same
energy but can have different monoenergetic target sources,
it is the “scattering (occurrence) probability” or equivalently
the emission probability (for photoelectrons) that must be
estimated. These parameters act as inherent weighting func-
tions and therefore each arrival can be thought of as being
partitioned according to the various weights into the composite
RN decision function to make the decision.

III. RADIONUCLIDE DETECTION

The development of a radionuclide detector based on
photon-by-photon processing follows. Thus, we develop a
“sequential” technique that is aimed at processing a single
photon arrival at a time rather than attempting to perform a

Fig. 1. Bayesian radiation detection: Acquisition, pre-processing (op-
tional), energy/rate discrimination/estimation, Compton rate discrimina-
tion/estimation, background and extraneous line rejection, decision function
estimation and RN identification.

batch solution which is the basis of PHS analysis [2]. The
basic approach is shown in Fig. 1. After a single photon is pre-
processed by the measurement system, both energy and arrival
time are extracted and passed onto energy/rate discriminators
to determine whether or not it is a targeted photon or its
downscatter. If acceptable (target), parameter estimates are
sequentially updated and provided as input to the decision
function for detection and identification. If not acceptable, the
photon is rejected and discarded (noise or background).

To formally pose the radionuclide detection problem, we
appeal to classical (sequential) detection theory [11]. We are to
test the binary hypothesis that the measured EMS has evolved
from the targeted radionuclide characterized uniquely from its
monoenergetic decomposition of Eq. 2. Therefore, we specify
the hypothesis test

H0 : ξ(n; ε,�τ) = R(n; ε,�τ ) + ν(n) [NON-TARGET]

H1 : ξ(n; ε,�τ) = R(n; εt,�τ t) + ν(n) [TARGET] (5)

where R(n; ε,�τ ) is the random composite EMS of Eq. 2
contaminated with zero-mean, Gaussian measurement (instru-
mentation) noise, ν ∼ N (0, σ2

ν) for εm� ∼ N (εm�, σ
2
εm�

) and
�τm� ∼ E(λ�τm��τm�(n)). Here the superscript t is used to
denote the “true” or “target” parameters.

The optimal solution to this binary decision problem is
based on applying the Neyman-Pearson theorem leading to the
likelihood given by the ratio of probabilities [11]. However,
since the distributions under investigation are members of the
exponential family [10], then taking logarithms leads to the
sequential log-likelihood ratio

Λ[Ξn] = Λ[Ξn−1] + lnPr(ξ(n; ε,�τ)|Ξn−1,H1)
− ln Pr(ξ(n; ε,�τ)|Ξn−1,H0) (6)

and therefore, the Wald sequential probability-ratio test be-



comes [11] (see Fig. 1)

Λ[Ξn] ≥ ln T1(n) Accept H1

lnT0(n) ≤ Λ[Ξn] ≤ ln T1(n) Continue

Λ[Ξn] ≤ ln T0(n) Accept H0

(7)

where the set of EMS measurements are ΞN :=
{ξ(0), ξ(1), · · · , ξ(N)} and the thresholds are specified in
terms of the false alarm (PFA) and miss (PM ) probabilities
as

T0(n) =
PM (n)
PFA(n)

T1(n) =
1 − PM(n)

PFA(n)
typically obtained by generating receiver operating characteris-
tic (ROC) curves and selecting an operating point (PFA,PM ).
So we see that at each photon arrival (at time n), we can
sequentially update the likelihood and thresholds to perform
the detection — “photon-by-photon.”

To implement this detection technique (see Eq. 5), we must
specify the required distributions in order to calculate the
decision function It can be shown that [8] the sequential log-
likelihood ratio detector is given by

Λ[Ξn] = Λ[Ξn−1] +
Mε∑

m=1

Lε(m)∑
�=0

ln Θm�(n; θ,H1) −
Mε∑

m=1

Lε(m)∑
�=0

ln Θm�(n; θ,H0)

(8)

where

Θm�(n; θ,Hi) :=
αm� × Pr(�τm�(n)|εm�(n), Ijk(m, �), Ξn−1,Hi) ×
Pr(εm�(n)|Ijk(m, �), Ξn−1,Hi)
and recall the emission/occurrence probability is

αm� = Pr(Ijk(m, �)|Ξn−1,Hi); i = 0, 1 (9)

giving us the general form required for our problem. Note
that this formulation provides us with a channel-by-channel
(photon-by-photon) processor, since the m�-th terms are avail-
able at the output of each channel.

It can also be shown [9] that by defining the photoelectric
(absorption) log-likelihood as Λ pe

[
Ξn−1

]
and the downscatter

log-likelihood as Λds

[
Ξn−1

]
, we obtain the decomposition

leading to the algorithmic structure (see Fig. 2)

Λ
[
Ξn

]
= Λ

[
Ξn−1

]
+ Λpe

[
Ξn−1

]
+ Λds

[
Ξn−1

]
(10)

where

Λpe

[
Ξn−1

]
:=

Mε∑
m=1

ln Θm0(n; θ,H1) − ln Θm0(n; θ,H0)

Λds

[
Ξn−1

]
:=

Mε∑
m=1

Lε(m)∑
�=1

ln Θm�(n; θ,H1)

− ln Θm�(n; θ,H0)

Not surprisingly, we see that this log-likelihood decompo-
sition shows that if we ignore the downscattered photons as in
Refr. [8] we cannot achieve the optimal decision because we
are not using all of the physics information available! Thus,
we expect the performance of this “extended” processor to be
superior to the photoelectric only implementation!

The sequential radiation detection processor is illustrated
in Fig. 2. As the photon arrives, its energy and interarrival
time are extracted and discriminated to select the appropriate
channel for processing. If it is a targeted photoelectron, then
it is processed precisely as discussed in Refr. [8], that is,
after discrimination the energy, interarrival (detection rate) and
emission/occurrence probability parameters are estimated, the
appropriate decision function updated and compared to the
threshold to “decide” if the targeted RN is present. On the
other hand, if the arrival is not deemed a photoelectron, then
it is discriminated to investigate the possibility of it being a
potential downscattered arrival. Here discrimination is based
on the selected energies associated with the target radionuclide
and its corresponding Compton region. That is, for example
with knowledge of the target RN Compton edge [2], a number
(Lε(m)) of downscattered energies or bins are selected and
used to specify a set of discriminants for Compton pro-
cessing. If accepted, then parameter estimation is performed
to enhance the energy which is used in the SPT model to
provide an estimate of the corresponding detection rate and
emission/occurrence probability. Thus, all of the downscatter
parameters are updated along with the corresponding “true”
decision functions. It is interesting to note that we can conceive
of the downscattered photon information being partitioned
into a set of weights (occurrence probabilities) and updating
the (partial) decision functions simultaneously as prescribed
by the optimal decision function. Once this information is
extracted and the appropriate decision functions updated, then
the threshold is tested to decide on the presence of a targeted
RN as shown in the figure. If the photon is not photoelectric,
then it is rejected and the next arrival is processed.

Applying statistical models of our problem, that is, each
energy component is assumed independent Gaussian and the
corresponding interarrival times are exponentially distributed
[2] For our problem we can re-write Eq. 8 using the cor-
responding parameter estimates as the final sequential log-
likelihood ratio radionuclide detector. That is, we require
the set of targeted (true) parameters, [{αt}, {εt}, {�τ t}] and
estimated parameters, [{α̂}, {ε̂}, {�τ̂}]. Once acquired, the
decision function can be calculated and compared to the
thresholds which have been estimated from ROC curve op-
erating points.

Λ[Ξn] = Λ[Ξn−1] +
Mε∑

m=1

Lε(m)∑
�=0

ln
( (αt

m�)
2λt

�τm�√
2πσεt

m�

)
− ln

( α̂2
m�λ̂�τm�(n|n)√
2πσ̂εm�(n|n)

)

+
(
α̂m�λ̂�τm�(n|n) − αt

m�λ
t
�τm�

)
ξ�τ(n)



Fig. 2. Flow diagram of radionuclide detection processor: (a) Photoelectric
processor. (b) Downscatter processor. (c) Decision function. (d) RN Detection

+
1
2

(ξε(n) − ε̂m�(n|n)
σ̂εm�(n|n)

)2

− 1
2

(ξε(n) − εt
m�(n)

σεt
m�

)2

(11)

IV. IMPLEMENTATION

There are three phases to the implementation: (1) discrim-
ination; (2) estimation; and (3) detection as shown in Fig. 2.
The first step is to discriminate the arrival to ascertain whether
or not it is one of the targeted RN components, that is, either
a photoelectron or a downscattered photon. Discrimination is
performed using truth data from Tables [3] and the output
of SPT model [7] for downscatter along with the resulting
parameters using calibration data to construct confidence in-
tervals for both energy and average interarrivals. It is here
that the calibrated one dimensional SPT model is applied to
obtain the targeted downscatter detection rates and occurrence
probabilities for the interval constructs. Once this step is
accomplished and the arrival is accepted, then the parameter
estimation step is performed. Here the energy, interarrival
and emission/occurrence probability are estimated using the
distribution models: energy/Gaussian (linear Kalman filter), in-
terarrival/Exponential (particle filter) and emission/occurrence
probability (sequential counter). With these parameter esti-
mates available we can then calculate the decision function
(detection) by incorporating both photoelectron and downscat-
tered arrivals. The thresholds are pre-calculated from ROC
curves and the operating point (detection and false alarm
probability) selected.

Sequential radionuclide detection is implemented in a
channel-by-channel framework. For a given set of radionu-
clides, the distributions associated with each individual mo-
noenergetic component are calculated in parallel at each
channel and then combined in the detector/identifier. The
sequential radiation detector has three possible choices to
discern the incoming photon arrival: (1) a target photoelectron;
or (2) a target downscattered photon; or (3) a background/noise
photon. If it is deemed background/noise, then the photon is
rejected. However, if it is a photoelectron or downscatter, then

it is processed separately. Thus, two stages of discrimination
are required, rather than the single stage of Refr. [8]. First, the
arrival is discriminated to be a photoelectron and processed as
such, if not, it is discriminated to be a downscatter photon and
then processed using a model-based scheme to extract its re-
quired parameters for detection. Once extracted the appropriate
(partial) decision functions are updated accordingly. Thus, the
sequential radionuclide detector is implemented in a channel-
by-channel framework. Basically, the individual distributions
are calculated in parallel at each channel and then combined
in the detector/identifier. At each arrival after discrimination,
the accepted channel jkth photon is processed by the en-
ergy and interarrival parameter estimators (θ̂) providing the
input to the log-likelihood ratio decision function along with
the truth parameters (θt → [{εt

m�}, {�τ t
m�}, {αt

m�}]; � =
0, · · · , Lε(m); m = 1, · · · , Mε) from the Tables [3] and SPT
model [7].

Thus, after successful discrimination the parameters are
estimated and employed to calculate the log-likelihood func-
tion. These are estimated channel-by-channel (m�-th-channel)
and the overall decision function implemented sequentially
(in arrival time). Once the parameters are estimated they are
implemented in each channel log-likelihood partial calcula-
tion (Θm�(n; θ)) and all of the partial sums are combined
along with the previous (in arrival time) log-likelihood to
sequentially update the new log-likelihood at time n. It is then
compared to the threshold to see if a detection is possible.
If not, the next photon is processed and the log-likelihood
updated to see if a decision can be made. This sequential
radionuclide process continues until there is enough data for
a decision.

Table I. Sequential Radiation Detection with Scattering
Discrimination

[εt
m� − κγσξ ≤ εm�(n) ≤ εt

m� + κγσξ] (energy)

[�τ t
m�−κγ̃σ�τ ≤ �τ̂m�(n) ≤ �τ t

m�+κγ̃σ�τ ] (interarrival)

Estimation

ε̂m�(n|n) = ε̂m�(n|n − 1) + Kεm� im�(n) (energy)

�τ̂m�(n|n) = arg max P̂r(�τm�(n)|Ξn) (interarrival)

λ̂�τm�(n|n) =
1

�τ̂m�(n|n)
(detection rate)

α̂m�(n) =
Nεm�(n)
Mε(n)

(emission probability)

Λ[Ξn] = Λ[Ξn−1] + ln Θm�(n; θt) − ln Θm�(n; θ̂)(dcn)

Detection

Λ[Ξn]

H1

≥
=
≤
H0

T1

Continue
T0

(log-likelihood)



V. RESULTS

A proof-of-concept experiment was developed [8] to assess
the feasibility of the sequential Bayesian processor. Three
source radionuclides (cobalt (60Co), cesium (137Cs), barium
(133Ba)) were targeted in a laboratory environment contami-
nated with background and extraneous sources. The sources
were centered on a direct line with the HPGe detector face
at a distance of 100 cm for 1000 sec. Each target source
and background was individually counted with the results
combined to generate the controlled “feasibility” data set.

The sequential Bayesian detector was applied to the “fea-
sibility” data set. The overall results of the processing are
shown in Fig. 3. We note three columns of data, the first
column is the composite pulse-height spectrum (not used),
with the second the composite EMS with the circles rep-
resenting the discriminator output photonelectrons and the
squares the downscatter photons. The final column is the
decision functions for each of the targeted radionuclides. As
each photon is processed, the decision function is sequentially
updated until one of the thresholds (target/nontarget) is crossed
(lighter crosses in figure) declaring a threat or non-threat.
The results of the photoelectric and downscatter processor are
shown in Fig. 3 where we observe detection times of 5.76 secs,
0.47 secs, and 0.46 secs respectively for the cobalt, cesium
and barium radionuclides. This performance is expected since
the “new” downscatter photon information is incorporated
into each channel. The ROC operating point was (98%,2%)
specifying the thresholds. Comparing these results to our
previous photoelectron detector [8], we see that the results
are faster for cesium (0.47<0.68 sec) and barium (0.46 <
0.51 sec), but slightly slower for the cobalt (5.76 > 4.05
sec). Few cobalt photons are available along with only a few
downscatters in this realization.

The results of applying the processors to an ensemble
of 100 EMS arrival are shown in Table II where we see
the average detection times for each radionuclide (barium,
cesium, cobalt) and each implementation (photoelectric-only
(PE), photoelectric and downscatter (PE+DS). The results are
reasonable for the basic and advanced (model) processors.

Thus, sequential Bayesian detector was achieved by defining
a target radionuclide(s) and its monoenergetic decomposition
including downscatter evolving from the underlying transport
physics of the photon and measurement process. The key
idea was to process the data, photon-by-photon, rejecting
any extraneous non-targeted radionuclide measurements and
processing only those that correspond to the targeted threat
radionuclide(s) while identifying downscattered photons and
extracting the underlying information for processing. The new
extended processor performed quite well.

Table II. Processor Comparison: 100 EMS Ensemble Runs.
133Ba 137Cs 60Co

Processor μ ± σ(sec) μ ± σ(sec) μ ± σ(sec)
PE 0.40± 0.10 0.67± 0.24 2.68± 0.49

PE+DS(Model) 0.40± 0.11 0.53± 0.22 2.67± 0.55

Fig. 3. Photoelectric and downscatter Bayesian detection and identification.
(a) Pulse-height spectrum (after calibration). (b) EMS with discrimination
(circles). (c) Log-likelihood decision functions for 60Co (detection time:
5.76 sec), 137Cs (detection time: 0.47 sec) and 133Ba (detection time:
0.46 sec) radionuclide detection/identification.
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